CO₂ Sensing Mechanism of La₂O₃-loaded SnO₂

Noritaka MIZUNO,* Tetsunori YOSHIOKA, Kazuyoshi KATO, and Masakazu IWAMOTO* Catalysis Research Center, Hokkaido University, Sapporo 060

The title mechanism was investigated by temperature programmed desorption (TPD). The TPD profile from La₂O₃-loaded SnO₂ consisted of two CO₂ peaks (450 K (α) and 650 K (β)) and one O₂ ascent. From the correlations among the amounts of β -CO₂ and O₂ desorbed, the amount of La₂O₃ loaded, and the sensitivity to CO₂, it was suggested that the decrease in the resistance of the sensor results from the adsorption of β -CO₂ and the desorption of O⁻ or O²⁻ to generate oxygen molecules and free electrons.

Various materials including the solid electrolyte, ¹⁻³) mixed oxide capacitor, ⁴) K₂CO₃-polyethylene glycol solution supported on porous ceramics, ⁶) hydroxyapatite, ⁷) and n-type semiconductors ⁸⁻¹⁰) have been reported as the candidates for the CO₂ gas sensor. Recently, Tamaki et al. and we have reported that the oxides such as SnO₂, ⁸) La₂O₃-loaded SnO₂, ⁹) and CaO-loaded In₂O₃, ¹⁰) have a possibility to provide a simpler and more feasible CO₂ sensor system. Although the two reports ^{8,9}) concern the SnO₂-based semiconductors, it should be noted that the electric resistance of the SnO₂ sensor increased on the introduction of CO₂-containing air at 373 - 438 K⁸) while that of the La₂O₃-loaded SnO₂ element decreased at 673 K.⁹) Therefore the elucidation of the CO₂ sensing mechanism is of great importance to develop the more effective sensors. Here we have studied the CO₂ sensing mechanism of La₂O₃-loaded SnO₂ element mainly by a temperature programmed desorption (TPD) technique.

SnO₂ powder was obtained from the Catalysis Society of Japan. The La₂O₃-loaded SnO₂ sensor element was prepared by the impregnation of the parent oxide element by coating aqueous solution of La nitrate with a brush unless otherwise noted.⁹⁾ Sample gas contains 2080 ppm CO₂ and dry air was used as balance. Hereafter the amount of lanthanum loaded is calculated and expressed by assuming the composition of La₂O₃. Prior to resistance measurements, each element was exposed to dry air (60 cm³·min⁻¹) at 773 K for 1 h. The resistance was measured at 573 - 773 K. The sensitivity to CO₂ was defined as the ratio of resistance of an element in air containing no CO₂ to that in a diluent CO₂ gas, R_{air}/R_{CO₂}. The TPD experiments of oxygen and CO₂ were carried out on a powder sample shaved off from the element. After being mounted in the TPD cell, the sample was treated in dry air at 773 K for 1 h followed by the cooling to room temperature in the same atmosphere. Then the sample was kept in the dry air stream for 1 h in the case of TPD of O₂ alone, or in the dry air + CO₂ (2080 ppm) stream for 1 h in the TPD of CO₂ and O₂. The TPD profile was obtained at a heating rate of 10 K·min⁻¹ in a He stream (60 cm³·min⁻¹). Small portions of the gases desorbed were led into a stainless steal sampler at regular intervals and analyzed with a gas chromatograph using Porapack Q and Molecular Sieve

5A columns.

Figure 1 shows the TPD profiles from La₂O₃(4.1 wt%)-SnO₂ exposed to a CO₂ + dry air stream at room temperature. The profile consisted of two desorption peaks of CO₂ around 450 K (α -CO₂) and 650 K (β -CO₂) and one ascent of O₂ desorption. Based on the IR measurements of CO₂ adsorbed on pure SnO₂ sample,¹¹) α -CO₂ can be attributed to the carbonate or bicarbonate species. The adsorbed species corresponding to β -CO₂ is unknown. The IR studies to make β -CO₂ clear are in progress. The ascent of O₂ is assignable to the desorption of O⁻ or O²⁻ similarly to that of SnO₂.¹²)

The results of CO₂ desorption from the other La₂O₃-loaded SnO₂ samples are summarized in Fig. 2. The desorption peaks of O2 were not shown to avoid the complicated Fig. 2. Clearly, all La₂O₃-SnO₂ samples prepared with a brush gave two desorption peaks of CO2, while SnO2 or La₂O₃-SnO₂ prepared by the incipient wetness method gave only one desorption peak around 473 K (α -CO₂). The profile from SnO2 is in good agreement with that previously reported.⁸⁾ Thus, the addition of La₂O₃ with a brush produced the site for the adsorption of β -CO₂. It was reported that La2(CO3)3 decomposes to La2O2CO3 at 701 - 758 K and further to La₂O₃ at 1179 -1203 K¹³): The role of La₂O₃ added should be clarified.

The surface La/Sn atomic ratio obtained by XPS for La₂O₃(3.5 wt%)-SnO₂ element prepared with a brush was about ten times greater than that of La₂O₃(4.0 wt%)-SnO₂ element prepared by the incipient wetness method. The

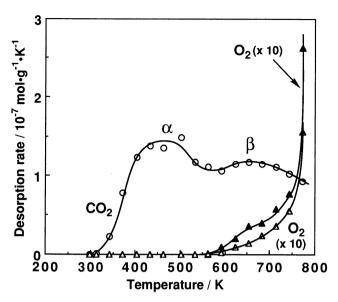


Fig. 1. TPD profile of CO₂ and O₂ from La₂O₃(4.1 wt%)-SnO₂ exposed to 2080 ppm CO₂ in dry air (O and Δ) or to dry air alone (\blacktriangle) at room temperature. O, CO₂; Δ and \blacktriangle , O₂.

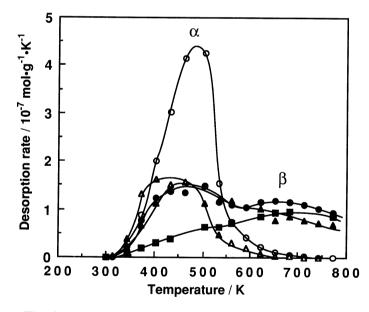


Fig. 2. TPD profile of CO₂ after exposure to 2080 ppm CO₂ (in dry air) at room temperature.

O, \blacktriangle , \bullet , and \blacksquare correspond to La₂O₃-SnO₂ samples with the loading amount of La₂O₃ of 0.0 (pure SnO₂), 2.8, 4.1, and 9.6 wt%, respectively. Δ , La₂O₃(4.0 wt%)-SnO₂ prepared by the incipient wetness method.⁹)

distribution of La may result in the different TPD profiles of CO₂.

We have presented previously that the resistance of La₂O₃-SnO₂ element decreased on the exposure to 2080 ppm CO2 at 673 K, while the resistance of SnO2 element little changed.⁹⁾ It was also reported that the resistance of SnO2 increased on the introduction of CO₂ at 373 - 438 K.8) The difference of the sensitive temperature regions to CO₂ between SnO₂ and La₂O₃-SnO₂ elements and the TPD results in Fig. 2 suggest that at the operation temperature of 673 K. β -CO₂ is responsible for the change in the resistance and not α -CO₂. This is strongly supported by the finding that La₂O₃-SnO₂ prepared by the incipient wetness method shows little change in resistance on the exposure to CO_{2} , and has no β - CO_{2} peak in the TPD profile (Δ , Fig. 2).

The sensitivity and the amount of β -CO₂ desorbed between 573 - 773 K are plotted against the amount of La₂O₃ loaded in Figs. 3a and 3b, respectively. Similar volcanoshaped dependencies on the amount of La₂O₃ loaded were observed for the sensitivity and the amount of β -CO₂, and the maximum of the former is in harmony with that of the latter. The correlations bear out that the sensitivity of the La₂O₃-loaded SnO₂ element at 673 K depends on the amount of β -CO₂.

From the comparison of Δ with \blacktriangle in Fig. 1, it is clear that the amount of O2 desorbed below 773 K decreased when CO2 adsorption was carried out at room temperature on the O2-preadsorbed surface. The amount of the decrement of O2 desorption is plotted as a function of the amount of β -CO2 in Fig. 4. It increased with the amount of β -CO2, suggesting that the decrease in the amount of

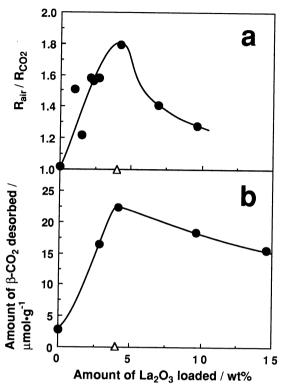


Fig. 3. Correlation between the sensitivity or the amount of β -CO₂ and the amount of La₂O₃ loaded.

 \bullet , La₂O₃-loaded SnO₂; Δ , the same as that in Fig. 2. The sensitivity was measured at 673 K and cited from ref. (9).

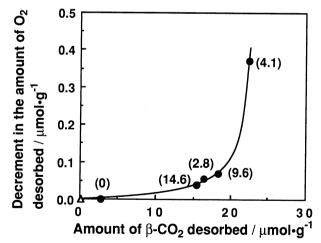


Fig. 4. Relationship between the decrement in the amount of O_2 desorbed (≤ 773 K) and the amount of β -CO₂ desorbed.

 \bullet and Δ , the same as that in Fig. 3. Numbers in parentheses were the amounts of La₂O₃ loaded.

O₂ desorption is caused by the adsorption of β -CO₂.

The resistance of La₂O₃-SnO₂ element increased and decreased to the original level in the presence and absence of oxygen at 673 K, respectively. The fact indicates that the La₂O₃-SnO₂ element is a n-type semiconductor. On the basis of above results, the decrease in the resistance of La₂O₃-loaded SnO₂ element on the exposure to CO₂ gas at 673 K can be understood by the following reaction,

$$2O^{-}(a)$$
 (or $2O^{2-}(a)$) + $CO_{2}(g)$ \longrightarrow $O_{2}(g)$ + $(\beta$ -) $CO_{2}(a)$ + 2e (or 4e).

Namely, the adsorption of β -CO₂ results in the desorption of oxygen negatively charged and the release of electrons. When the working temperature of the sensor is low, the α -CO₂ species would take part in the response for CO₂ by the following reaction as previously reported, ⁸)

$$O^- + CO_2 + e \longrightarrow CO_3^2$$

The adsorption of CO₂ would form a carbonate species and bring about the increase of the electric resistance.

All the findings in this work lead to the conclusion that the decrease in the resistance of semiconductors at 673 K upon the exposure to CO₂ gas results from the adsorption of β -CO₂ and the desorption of O⁻ or O²⁻ to generate oxygen molecules and free electrons.

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

References

- 1) N. Miura, S. Yao, Y. Shimizu, and N. Yamazoe, J. Electrochem. Soc., 139, 1384 (1992).
- 2) M. Gauthier, A. Belanger, and D. Fautex, Proc. Intern. Meeting Chem. Sensors, 1983, 353.
- 3) T, Ogata, S. Fujitsu, M. Miyayama, K. Koumoto, and H. Yanagida, J. Mater. Sci. Lett., 5, 285 (1986).
- 4) T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, J. Am. Ceram. Soc., 75, 613 (1992).
- 5) J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, and B. C. Tofield, *J. Chem. Soc.*, Faraday Trans. 1, 84, 441 (1988).
- 6) Y. Shimizu, K. Komori, and M. Egashira, J. Electrochem. Soc., 136, 2256 (1989).
- 7) M. Nagai, T. Tadashi, and T. Saeki, Sens. Actuators, 15, 145 (1988).
- 8) J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, *Chem. Lett.*, **1990**, 1243.
- 9) T. Yoshioka, N. Mizuno, and M. Iwamoto, Chem. Lett., 1991, 1249.
- 10) N. Mizuno, K. Kato, T. Yoshioka, and M. Iwamoto, Chem. Lett., 1992, 1683.
- 11) E. W. Thornton and P. G. Harrison, J. Chem. Soc., Faraday Trans. 1, 71, 461 (1975).
- 12) N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci., 86, 335 (1979).
- 13) G. Pannetier, J. Nataf, and A. Dereigne, Bull. Soc. Chim. Fr., 318 (1965).

(Received September 11, 1992)